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Abstract. Basic algorithms for the production of stellar photometry
from CCD observations are described and reviewed. Simple algorithms
for detecting stars, finding their positions, and estimating the nearby sky
background will be presented along with references to the extensive lit-
erature devoted to these topics. The basic techniques of aperture and
PSF-fitting CCD stellar photometry are discussed in detail. Recent ad-
vances in PSF-fitting CCD stellar photometry are described and used to
show how accurate V-band stellar photometry with the Next Generation
Space Telescope could be accomplished with a 8-m primary mirror that
is diffraction limited at near-infrared wavelengths.

1. Introduction to CCD Stellar Photometry

The problem of doing accurate stellar photometry with calibrated charge-coupled
device (CCD) data amounts to that of condensing the intensity values of hun-
dreds, thousands, or even millions of picture elements (pixels) into a list con-
taining the magnitude and position of each star on the CCD image.

If the stellar field is not crowded, the astronomer can measure the magni-
tude of each star by doing the digital equivalent of aperture photometry. Stellar
photometry becomes much more difficult if one wishes to study crowded stellar
fields. The basic assumptions underlying the simple techniques of CCD aperture
photometry are frequently not valid in crowded stellar fields and more sophisti-
cated methods like Point-Spread-Function (PSF) model fitting must be used in
order to achieve accurate photometry.

2. CCD Aperture Stellar Photometry

The process of determining the apparent magnitude of a star can be surprisingly
complex even with a technique as simple as CCD aperture photometry. We
start by assuming that our CCD observations have already been flat-fielded and
calibrated. The basic process of aperture stellar photometry is, in principle,
quite simple:

1. Find the star.

2. Center an aperture of N4 pixels on the star.

3. Add up the electrons within the aperture: S4 (units: electrons e™).

4. Determine the nearby background flux: B (units: e pixel !).
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5. Determine the instrumental magnitude: m' = —2.5log [(S4 — NaB)/1e™].
6. Determine the aperture correction: Am' (units: mag).
7. Compute the aperture-corrected instrumental magnitude: m = m' + Am/.

The important process of transforming instrumental magnitudes to a standard
system is extensively described in the literature and will not covered in this
contribution due to space limitations.

2.1. Finding Stars

There are many techniques available for the detection of astronomical objects in
CCD observations (see, e.g., Fischer & Kochanski 1994, Secker 1995, and refer-
ences therein). The following is a short introduction to some of the techniques
that can be used to detect stars in CCD observations.

The signal of a noisy digital image can frequently be enhanced by sup-
pressing high spatial frequency noise in the image. For modern CCD stellar
observations, this generally means suppressing photon and CCD readout noise.
This can frequently be accomplished by using small digital low-pass filters like

1/16 1/8 1/16
Lpgxgz( 1/8 1/4 1/8)
1/16 1/8 1/16

which is commonly used in digital image processing for this purpose. Small
digital low-pass filters are useful in finding stars in digital stellar observations
that have had the background sky removed (Irwin 1985). The background sky
of an image can frequently be approximated by using small median filters. Com-
bining low-pass filters with median filters can be very useful; the LPD (low-pass
difference) filter,

LPDj3y3(F) = LP3y«3(F) — MEDIANG;5 [LP3y3(F)]

works well with Hubble Space Telescope WF/PC and WFPC2 images, F, for
the purpose of detecting stars and other point sources (Appendix A of Mighell
& Rich 1995). The LPD filter is a high-pass frequency filter which is effectively a
digital analog of Malin’s unsharp photographic masking technique (Malin 1977,
1981, and references therein).

The following listing, for example, is a FORTRAN implementation of a simple
peak detector algorithm which identifies any pixel that is greater than any of its
eight neighbors:

C
C A Simple Peak Detector Algorithm
C

C Copyleft (L) 1998 Kenneth J. Mighell (Kitt Peak National Observatory)
C

SUBROUTINE PEAKER(IMAGE,NX,NY,PEAKMIN,PEAKMAX)
INTEGER NX, NY, X, Y, XX, YY
REAL IMAGE(NX,NY), PEAKMIN, PEAKMAX, PIXEL, NEIGHBOR
LOGICAL BINGO
DO Y = 2,(NY-1)
DO X = 2,(NX-1)
PIXEL = IMAGE(X,Y)
IF ((PIXEL.GE.PEAKMIN).AND.(PIXEL.LT.PEAKMAX)) THEN
BINGO = .TRUE.
DO YY = (Y-1),(Y+1)
DO XX = (X-1),(X+1)
IF (BINGD) THEN
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NEIGHBOR = IMAGE(XX,YY)
IF (NEIGHBOR.GT.PIXEL) THEN
BINGO = .FALSE.
ELSE IF (NEIGHBOR.EQ.PIXEL) THEN
IF ((XX.NE.X).O0R.(YY.NE.Y)) THEN
IF (((XX.LE.X).AND.(YY.LE.Y))
& .OR. ((XX.GT.X).AND.(YY.LT.Y))) BINGO = .FALSE.
ENDIF
ENDIF
ENDIF
ENDDO
ENDDO
IF (BINGO) WRITE (*,%)
& ’Found a peak at position (’,X,’,’,Y,’) with a value of’,PIXEL
ENDIF
ENDDO
ENDDO
RETURN
END
23456

This algorithm works particularly well with CCD stellar observations that have
had the background sky removed (e.g., LPD-filtered images).

2.2. Determining the Centers of Stars

Many CCD aperture photometry programs require the user to give the position
of the star on the CCD frame. Most of these programs offer a choice of cen-
tering algorithms to determine the center of a star when provided with only a
rough estimate. The review article of Stone (1989) compares the performance
of five different digital centering algorithms under a wide range of atmospheric
seeing and background-level conditions. It may be useful to create your own
centroid algorithm based upon the special requirements of your particular anal-
ysis problem. The following listing, for example, is a FORTRAN implementation
of a centroid algorithm which produces robust estimates without requiring an
estimate of the the nearby “sky” background:

C
C A Simple Centroid Algorithm
C
C A modification of the Modified Moment Method (Stone 1989,AJ,97,1227)
C that works well with small apertures.
C
C Copyleft (L) 1998 Kenneth J. Mighell (Kitt Peak National Observatory)
c
SUBROUTINE CENTROID(X,Z,NN,N,X_IN,X_0UT)
INTEGER N, NN ! <-- assumes that 1 <= N <= NN
REAL X(NN), Z(NN), X_IN, X_OUT, BIG

DOUBLE PRECISION DELTA, SUM1, SUM2, DIFF, XX
DOUBLE PRECISION INTENSITY, POSITION, MINIMUM

INTEGER I, J , NITERATIONS
PARAMETER (BIG=1E30,NITERATIONS=10)
MINIMUM = BIG

DO I =1,N

INTENSITY = Z(I) ! <-- Z(I) is the intensity at the position X(I)
MINIMUM = MIN(INTENSITY,MINIMUM)

ENDDO
XX = X_IN
DELTA = 0DO

DO J = 1,NITERATIONS
XX = XX + DELTA

SUM1 = 0DO
SUM2 = 0DO
DO I = 1,N

POSITION = X(I)
INTENSITY = Z(I)
DIFF = MAX((INTENSITY-MINIMUM),ODO)

SUM1 = SUM1 + (POSITION-XX)*DIFF
SUM2 = SUM2 + DIFF
ENDDO

DELTA = SUM1/SUM2
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ENDDO
X_0UT = XX
RETURN
END

C€23456

This algorithm is a simplified version of the one used by my CCDCAP aperture
stellar photometry package'. If precise absolute or relatives positions from CCD
observations are required, then one should investigate the extensive literature
dedicated to CCD astrometry.

2.3. Determining the Nearby Background

The background (“sky”) flux associated with a star is generally determined by
analyzing the distribution of intensities of nearby background pixels. In the case
of circular aperture photometry, the background flux is typically determined by
analyzing the pixels in an annulus beyond the stellar aperture. The inner radius
of the sky annulus is typically several FWHM? distant from the center of the
aperture in order to avoid the inclusion of contaminating light from the star
itself. The width of the annulus is typically large enough so that the annulus
contains between ~50 and a few hundred pixels.

Many aperture photometry programs allow the user to set the background
flux to be the modal value of the background intensity distribution. The mode
of the background distribution is frequently estimated by using the following
useful approximation,

mode ~ 3xmedian — 2xmean (for median < mean),

(Wells 1979; Kendall & Stuart 1958; Haldane 1942; Pearson 1895). This ap-
proximation, unfortunately, is known to produce background estimates that are
biased towards higher values (e.g., Newberry 1992). Better methods for the es-
timation of the background are available. Modal estimates of the background
distribution after the iterative rejection of outlier pixel intensities beyond 2.5—
3.0 standard deviations of the mean generally produce reasonable results (Da
Costa 1992).

Many algorithms are available and most aperture photometry programs
offer the user a choice of several methods to determine the background flux. For
example, the popular APPHOT aperture photometry IRAF package offers the user
the choice of 11 different ways the background can be estimated (Davis 1987).
As always when using analysis software, the astronomer is strongly advised to
carefully read the user documentation in order to understand which methodology
will produce the best results for a given CCD observation or application.

2.4. Determining the Stellar Signal within an Aperture

The fundamental task of a CCD aperture photometry program is to accurately
measure all the electrons, S4, that fall within an aperture placed on a CCD
image. Unless the background flux, B, is exactly zero electrons per pixel, one

1h‘l:tp ://wuw.noao.edu/staff/mighell/ccdcap/

2The Full-Width-at-Half-Maximum of a critically-sampled Gaussian distribution is ~2.35 pixels.
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can never directly measure the number of electrons, Sy, from a star within the
aperture. One measures, instead, the quantity S4 = Sy + NaB, where N4 is the
aperture of the aperture (in pixels). The instrumental magnitude of an aperture
measurement of a CCD observation of a star can thus be defined as

Sa— NAB]
le™

= —25log [15*_] = —2.5log

[§]

where the final form on the right is in terms of observable quantities. By this def-
inition, a stellar intensity of one electron would have an instrumental magnitude
of zero. The estimated error of the instrumental magnitude is approximately

AS*]
Sk

Am =~ 1.0857 [

where AS, is the measurement error (in electrons) of the estimated number of
electrons from the star within the aperture.

It is clearly important to determine the observable quantities S4, B, and
Ny as accurately as possible. Let us consider the aperture area, Ny, first. If q;
is the area of the jth aperture pixel, then the total area of the aperture, N4, is
simply

A
Ni=) a5,
j=1

where A indicates that the summation includes all pixels or partial pixels within
the aperture. The area of the jth aperture pixel will be exactly one pixel only
when the pixel is completely within the aperture, otherwise only a fraction of
the pixel lies within the aperture and the value of a; is between zero and one
(0 < a; <1 pixel). The area of a circular aperture is A = 7r? pixels where
the radius of the aperture is r pixels. Although it is not difficult to exactly
determine the partial pixel areas with square pixels and circular apertures (e.g.,
Fig. 1), several standard CCD aperture photometry programs only approximate
the partial pixel areas. For example, the popular PHOT task of the APPHOT
package approximates the circular aperture by an irregular polygon (Davis 1987).
While this approximation is generally fine with large apertures, it can sometimes
produce large systematic measurement errors for small aperture radii.

Let us now consider the sum of all electrons within the aperture (S4).
If z; is the intensity (in electrons) of the jth aperture pixel, then one simple
approximation of S4 is

A
Sa= Z a;zj . (1)
j=1

This approximation linearly weights the pixel intensity with the area of the pixel
within the aperture. The PHOT task uses a linear pixel weighting algorithm that
is very similar to this approximation. The use of Equation (1) implicitly assumes
that the Point Spread Function is nearly flat at the edge of the aperture. The
PSF is generally nearly flat only at large distances from the center of a star
where the encircled-energy function is nearly equal to one (i.e., 100%). The use
of Equation (1) is thus generally appropriate for large aperture radii. Wherever
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Figure 1. A circular aperture on an array of square CCD pixels. The
black pixels are entirely within the aperture and the gray pixels are only
partially within the aperture.

the PSF is a rapidly changing function of radius (e.g., at small radii of seeing-
optimized CCD observations) the use of Equation (1) is likely to produce large
systematic measurement errors.

One way of reducing this systematic measurement error is to split each pixel
into subpixels by using a bilinear pixel interpolation algorithm. One such algo-
rithm is to use the two-dimensional analog of the sinc function: Ji(7r)/2r. This
function, like many others, has the unfortunate effect of degrading the original
image by spreading photons (electrons) beyond the original pixel. I created cre-
ated the QUADPX bilinear pixel interpolation algorithm which splits a pixel into
4 subpixels whose sum is always equal to that of the original pixel (Appendix
B of Mighell & Rich 1995). Numerical experiments have shown that using the
QUADPX algorithm can reduce the systematic measurement error of critically-
sampled Gaussians by a factor of ~6. For example, the photometric error of an
aperture radius of 2.0 pixels went from 0.068 mag using Equation (1) to 0.011
mag with the CCDCAP package which implements the QUADPX algorithm.

2.5. Optimal Aperture Size and Aperture Corrections

The best (smallest) stellar photometric errors (i.e., the largest signal-to-noise
ratios) are generally obtained with relatively small apertures (see, e.g., Fig. 6 of
Howell 1989). Analysis of theoretical CCD signal-to-noise-ratio equations (see,
e.g., Newberry 1991, Howell 1992, Merline & Howell 1995, Howell et al. 1996,
and references therein) shows that large apertures can have large photometric
errors when the the total number of stellar photons in the aperture becomes
comparable with the total number of background photons in the aperture. Fur-
thermore, a measurement error for the background flux as small as just 1 electron
per pixel can by itself produce large photometric uncertainties at large aperture
radii. Small apertures, however, can be too small when they allow such a small
fraction of the star light to be found within the aperture that the photometric
error becomes dominated by small-number (a.k.a. counting or Poisson) statistics
because little or no signal has been measured.
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A Gaussian is a good model for the Point Spread Function of a ground-
based CCD observation since the central core of a ground-based stellar profile
is approximately Gaussian (King 1971). One can easily show that the optimum
signal-to-noise ratio for a Gaussian PSF is obtained for a circular aperture radius
of ~1.60 (i.e., r ~ 0.68 FWHM) which contains about 72% of the encircled-
energy. Pritchet & Kline (1981) note that the signal-to-noise ratio is fairly
insensitive to radius near the “optimal” radius value ~1.6 ¢ for a Gaussian PSF;
deviations from the optimal radius by as much as +50% generally make little
difference. Since centering errors will be more critical for smaller apertures than
for larger apertures, it is only prudent to err on the larger side by using apertures
with radii which are larger than ~0.68 FWHM .

An aperture radius of r * FWHM makes an excellent practical compromise
between concerns about systematic centering errors and diminishing signal-to-
noise ratios typically obtained with larger aperture radii. By analyzing the
CCD signal-to-noise ratio equations, one can show that brighter stars will have
larger optimal aperture sizes than do fainter stars. If one must use only one
aperture size, then it is clearly advantageous to chose a global aperture size
which produces the smallest photometric errors for the faintest stars (i.e., use
r ~x FWHM).

Small apertures frequently do not contain all the flux from a star. The
amount of the missing star light can found by determining the appropriate aper-
ture correction by measuring nearby bright isolated stars. Howell (1989) and
Stetson (1990), among others, describe the process how aperture corrections can
be accurately determined using the aperture growth-curve method.

3. CCD PSF-Fitting Stellar Photometry

Consider a ground-based CCD observation of two stars whose stellar images
overlap. Assuming we already know the Point Spread Function of the obser-
vation, a simple model of the observation will have seven parameters: peak
intensities (I1,I2), positions (X1, Y1, X,Y3), and the background sky level B
which is assumed to be the same for both component images. One finds that
the parameters are not independent for overlapping stars with the presence of
photon and readout noise. The conservation of photon flux will require that if
I; increases then Iy must decrease and vice versa for a given value of B. The
most accurate photometry possible is obtained when these dependent parame-
ters are fitted simultaneously. Any reasonable model of two overlapping stellar
images will be a non-linear function when the positions and peak intensities are
to be determined simultaneously. The technique of non-linear least-squares fit-
ting was developed to provide for the simultaneous determination of dependent
or independent parameters of non-linear model functions.

Assume that we have a calibrated CCD observation with N pixels and that
z; s the intensity in electrons (e ) of the sth pixel at (z;,y;) with an error of
o;. Let model(z,y,;a1,...,an) be a model of the intensity values that has two
coordinates (z,y) and M parameters. For notational convenience, let the vector
r; represent the coordinates (z;,y;) and the vector a represent all the parameters
[i.e., @ = (a1,...,apr)].- Thus the model of intensities will normally be written
as model(r;; a).
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The measure of the goodness of fit between the data and the model, called
chi-square, is defined as

N
(@) =) %[zZ — model(r; a)]?

i=1 "¢

The theory of least squares states that the optimum value of the parameter
vector a is obtained when x?(a) is minimized with respect to each parameter
simultaneously. If the function x?(a) is thought of as a surface in the M-
dimensional parameter space and if @ty is defined as the optimal parameter
vector, then the absolute minimum of that surface is x?(a{yye). The surface of
the function x2(a) might be very complicated and the fitting algorithm must be
able to converge to believable solutions (answers) even in ill-defined situations.

For some small correction parameter vector & we can approximate x?(a+§)
by its Taylor series expansion:

o

1 1
x*(a+8) = Z —|(6 -V)"x2%(a) = x*(a) + 6 - Vx%(a) + 2 6-H.-§
n=0""
where o 2( )
[H]]k o E)ajaak

the jkth element of the M xM Hessian matrix H of x?(a) [see, e.g., Arfken
1970; Press et al. 1986). If x%(a + &) is a local minimum of x?, then it can be
shown that

H.6=-Vx*a).

By solving this equation for the correction vector § it is then possible to deter-
mine a better parameter vector anew = a,)q + 6 - When the parameter vector
(a) is redefined to be the better parameter (anew), the Hessian matrix and the
gradient of x2(a) can then be recalculated to determine a new correction vector
(6). This process repeats until d is sufficiently small. The final parameter vec-
tor is called the optimal parameter vector, ag, and should be very close to the
optimal parameter vector (@tyye) if the fit is good.

This method will find the absolute minimum of x?(a) if the original guess
a is near aiye- Unfortunately, the original guess of the parameter vector a
may not always be very good. For production stellar photometry software it is
important that the search for the absolute minimum of x? be both robust and
efficient.

3.1. Analytical Models

One can frequently create a realistic intensity model of a ground-based CCD
observation of a total of K stars on a non-flat background with a combination
of Moffat (1969) functions on a tilted plane:

mOdd(r; a) = mOdel(xa Y3 BOaBXaBYaIlaXlaYIaplaTla' . aIKaXK,YKapKaTK)

K
= B() +Bx.’E+Byy+ Zqu}k
k=1
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where the By, Bx, By terms describe the tilted-plane model of the background
and Iy is the intensity of the kth star which has a Point Spread Function of

v = /:c+0 5 /y+0 5 [ { z — Xp)? Jg (y = ¥’ H - dy dz . (2)

The partial derivatives of model(r; a) must now be determined:
Omodel _ 1 Omodel . Omodel _y Omodel

3130 ’ 0Bx ’ 0By ’ Blk

Omodel _ oV,  Omodel _7 oV,  Odmodel _7 oV,  Omodel _7 ovy
X}, kox, oYy Move'  Opy Mopw  Omk Ko,
If the PSF, Uy, does not have a general analytical solution, it can usually be

approximated numerically. For example, if we subdivide a pixel into n? subpixels,

then Equation (2) can be approximated as ¥, = v, ¥ where

{([x —&+n7N] = Xp)2 + (fy — €+ 0] —Ya)? H o
ok

= \I]k:a

—Tk

Y =

1 n n
Py

i=1j=1

1+

and ¢ = (n+ 1)/(2n). The new partial derivatives of model(r;a) can now be
determined as follows

Omodel ~ _.  Omodel 2Dyt (v — Xi)  Omodel  2Iy7y (y —Yy)
ol =Y 0X}, ~ pi ,y]’gk+1 ’ oY}, ~ p% ,y]7€'k+1 )
Omodel 21,7 [(z — Xj)? -Y, Omodel _

~ 2T [( k) : +$y k)’ . ~ —Tyy™ In().-
Opy P ok 0T

Simulations and practical experience has demonstrated that the v, ™ approxi-

mation with the Levenberg-Marquardt method of non-linear least squares (Lev-
enberg 1944, Marquardt 1963) produces accurate and precise CCD stellar pho-
tometry (Mighell 1989, 1990).

3.2. Digital Models

One can create a realistic intensity model of a Hubble Space Telescope (HST)
CCD observation of K stars on a non-flat background with a combination of
digital Point Spread Functions on a tilted plane:

model(r;a) = model(z,y; By, Bx,By,I1,X1,Y1,%1,..., Ik, XK, Yk, VK)
K
= Bo+Bxz+Byy+ Y LiVi(z — Xp,y — Yr)
k=1

where the By, Bx, By terms describe the tilted-plane model of the background
and I is the intensity of the kth star which has a digital PSF, Wy, that is
represented with matrix of numbers with a sum of one. If the kth star is isolated
and on a flat background, then the digital PSF, U, can be easily derived from
the actual image. Alternatively, ¥; could be a synthetic PSF computed by PSF
modeling software [e.g., the TINY TIM package® of Krist (1993, Krist & Hook

3ftp://ftp.stsci.edu/pub/software/tinytim/
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Figure 2.  Typical Point Spread Functions (¥) of the Hubble Space
Telescope WEFPC2 (left) and WF/PC (right) instruments (M star,
F555W filter) and their respective partial derivatives with respect to
the directions z (0¥ /0z) and y (0¥ /0y). These PSFs were synthesized
using TINY TIM versioN 4.08 (Krist 1994).

1997)]. With a digital PSF in hand, one can then easily determine the partial
derivatives with respect to z and y using standard numerical differentiation
techniques (see Fig. 2). The art of CCD photometry with digital Point Spread
Functions lies in the implementation details. While the mathematics is the same
as for the case of analytical PSFs, the software engineering issues are significantly
more challenging.

3.3. Recent Advances

Traditional PSF-fitting CCD photometric reduction packages like DAOPHOT
(Stetson 1987) use analytical functions to represent the Point Spread Function.
All the major partial derivative computations are computed on the analytical
model of the PSF. Any deviations of the real-world PSF from the analytical PSF
are then generally stored in a residual matrix which is only used to determine
the x? goodness-of-fit.

I have recently demonstrated the feasibility of doing accurate CCD stellar
photometry with digital Point Spread Functions. I have developed a new digi-
tal PSF-fitting algorithm which does not require a residual matrix because all
partial derivative computations are done on the digital PSF itself using stan-
dard numerical differentiation techniques. This algorithm has already passed the
proof-of-principle stage with the successful reduction of simulated Next Gener-
ation Space Telescope (NGST) CCD stellar observations (see Fig. 3.3.).

T investigated the performance of CCD stellar photometry with a 1.5-micron
diffraction-limited 8-m Next Generation Space Telescope. These simulations
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used artificial Point Spread Functions for three different 8-m NGST design con-
cepts which were kindly provided by John Krist. Assuming that the 8-m NGST
primary mirror has 1/13 wave RMS errors at 1.5 micron, I determined that 90%
of the light from a star falls within an aperture radius of 0.1 arcsec — the size
of one WF pixel of the Hubble Space Telescope WFPC2 instrument. The three
NGST design concepts have nearly identical V-band encircled-energy functions;
the degradation caused by the differences between the three NGST design con-
cepts is quite negligible when state-of-the-art digital-PSF photometric reduction
software is used to analyze uncrowded stellar fields.

Figure 3. Measured signal-to-noise
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simuiate 5@ frieron ratios of simulated NGST CCD stel-

T
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Stellar Intensity (electrons) cepts of a 1.5-um diffraction-limited

mirror.

All the V-band PSFs used in these simulations were sampled at 0.0064 arc-
sec pixel~! which is the critical V-band sampling rate of a perfect 0.5-micron
diffraction-limited 8-m NGST. Better photometric performance for all three
NGST design concepts could be obtained by using larger CCD pixels: a pixel
size of ~0.013 (~2 x 0.0064) arcsec pixel ! should provide an optimal pixel
sampling when the 8-m primary mirror is diffraction-limited at 1.5 micron.
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