The following non-intrinsic math functions can be derived from the intrinsic math functions:
Function | Derived equivalents |
---|---|
Secant | Sec(X) = 1 / Cos(X) |
Cosecant | Cosec(X) = 1 / Sin(X) |
Cotangent | Cotan(X) = 1 / Tan(X) |
Inverse Sine | Arcsin(X) = Atn(X / Sqr(-X * X + 1)) |
Inverse Cosine | Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1) |
Inverse Secant | Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) -1) * (2 * Atn(1)) |
Inverse Cosecant | Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1)) |
Inverse Cotangent | Arccotan(X) = Atn(X) + 2 * Atn(1) |
Hyperbolic Sine | HSin(X) = (Exp(X) - Exp(-X)) / 2 |
Hyperbolic Cosine | HCos(X) = (Exp(X) + Exp(-X)) / 2 |
Hyperbolic Tangent | HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X)) |
Hyperbolic Secant | HSec(X) = 2 / (Exp(X) + Exp(-X)) |
Hyperbolic Cosecant | HCosec(X) = 2 / (Exp(X) - Exp(-X)) |
Hyperbolic Cotangent | HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X)) |
Inverse Hyperbolic Sine | HArcsin(X) = Log(X + Sqr(X * X + 1)) |
Inverse Hyperbolic Cosine | HArccos(X) = Log(X + Sqr(X * X - 1)) |
Inverse Hyperbolic Tangent | HArctan(X) = Log((1 + X) / (1 - X)) / 2 |
Inverse Hyperbolic Secant | HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X) |
Inverse Hyperbolic Cosecant | HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) +1) / X) |
Inverse Hyperbolic Cotangent | HArccotan(X) = Log((X + 1) / (X - 1)) / 2 |
Logarithm to base N | LogN(X) = Log(X) / Log(N) |
Atn Function | Cos Function | Exp Function | Log Function | Sin Function | Sqr Function | Tan Function